The accuracy of the compressible Reynolds equation for predicting the local pressure in gas-lubricated textured parallel slider bearings.

نویسندگان

  • Mingfeng Qiu
  • Brian N Bailey
  • Rob Stoll
  • Bart Raeymaekers
چکیده

The validity of the compressible Reynolds equation to predict the local pressure in a gas-lubricated, textured parallel slider bearing is investigated. The local bearing pressure is numerically simulated using the Reynolds equation and the Navier-Stokes equations for different texture geometries and operating conditions. The respective results are compared and the simplifying assumptions inherent in the application of the Reynolds equation are quantitatively evaluated. The deviation between the local bearing pressure obtained with the Reynolds equation and the Navier-Stokes equations increases with increasing texture aspect ratio, because a significant cross-film pressure gradient and a large velocity gradient in the sliding direction develop in the lubricant film. Inertia is found to be negligible throughout this study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A phenomenological lubrication model for the entire Knudsen regime

Rarefied gas flows in thin film slider bearings are studied in a wide range of Knudsen numbers (Kn) at low Mach number (Ma) with the objective of developing simple physics-based semi-analytical models. A recently developed modified slip boundary condition for steady plane Couette flows and a generalized high-order velocity slip boundary condition, developed and validated earlier for pressure-dr...

متن کامل

Transition from Boundary Lubrication to Hydrodynamic Lubrication of Slider Bearings

The transition from boundary lubrication to fully hydrodynamic lubrication is investigated for air-lubricated slider bearings using the electrical resistance method. Intermittent contacts are shown to exist even under conditions for which the numerical solution of the Reynolds equation or white light interferometry predicts steady state spacings in the spacing region from 0.125 to 0.25 pm. The ...

متن کامل

Design-driven modeling of surface-textured full-film lubricated sliding: validation and rationale of non-standard thrust observations

Our recent experimental work showed that asymmetry is needed for surface textures to decrease friction in full-film lubricated sliding (e.g. thrust bearings) with Newtonian fluids; textures reduce the shear load and produce a separating normal force [1]. However, standard slider bearing theory cannot explain the sign of the observed normal thrust, and any effort to optimize surface textures wou...

متن کامل

Modelling lubricated revolute joints in multibody mechanical systems

This work deals with the modelling of lubricated revolute joints in multibody mechanical systems. In most machines and mechanisms, the joints are designed to operate with some lubricant fluid. The high pressures generated in the lubricant fluid act to keep the journal and the bearing apart. Moreover, the thin film formed by lubricant reduces friction and wear, provides load capacity and adds da...

متن کامل

MATHEMATICAL ANALYSIS OF NEWLY DESIGNED TWO POROUS LAYERS SLIDER BEARING WITH A CONVEX PAD UPPER SURFACE CONSIDERING SLIP AND SQUEEZE VELOCITY USING FERROFLUID LUBRICANT

This paper proposes mathematical modeling and analysis of ferrofluid lubricated newly designed slider bearing having convex pad (surface or plate) stator with two porous layers attached to the slider. The problem considers the effect of slip velocity proposed by Sparrow et. al.[1] and modified by Shah et. al.[2] at the film-porous interface. The squeeze velocity V=−which appears when the upper ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tribology international

دوره 72  شماره 

صفحات  -

تاریخ انتشار 2014